Welcome!

Government Cloud Authors: Elizabeth White, Liz McMillan, Gopala Krishna Behara, Raju Myadam, Kevin Jackson

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Golden State Warriors Analytics Exercise | @BigDataExpo #BigData #Analytics

Identifying and quantifying variables that might be better predictors of performance

For a recent University of San Francisco MBA class, I wanted to put my students in a challenging situation where they would be forced to make difficult data science trade-offs between gathering data, preparing the data and performing the actual analysis.

The purpose of the exercise was to test their ability to “think like a data scientist” with respect to identifying and quantifying variables that might be better predictors of performance. The exercise would require them to:

  • Set up a basic analytic environment
  • Gather and organize different data sources
  • Explore the data using different visualization techniques
  • Create and test composite metrics by grouping and transforming base metrics
  • Create a score or analytic model that supports their recommendations

I gave them the links to 10 Warrior games (5 regulation wins, 3 overtime losses and 2 regulation losses) as their starting data set.

I then put them in a time boxed situation (spend no more than 5 hours on the exercise) with the following scenario:

You have been hired by the Golden State Warriors coaching staff to review game performance data to identify and quantify metrics that predict a Warriors victory

Here were the key deliverables for the exercise:

  1. I wanted a single, easy-to-understand slide with in-game and/or player recommendations.
  2. I wanted a break out of how they spent their 5 hours across the following categories:
  • Setting up your analytic environment
  • Gathering and organizing the data
  • Visualizing and analyzing the data
  • Creating the analytic models and recommendations
  1. Finally, I wanted back-up information (data, visualizations and analytics) in order to defend their in-game and/or player recommendations.

Exercise Learnings
Here is what we learned from the exercise:

Lesson #1: It’s difficult to not spend too much time gathering and cleansing data. On average, the teams spent 50% to 80% of their time gathering and preparing the data. That only left 10% to 20% of their time for the actual analysis. It’s really hard to know when “good enough” is really “good enough” when it comes to gathering and preparing the data.

Lesson #2: Quick and dirty visualizations are critical in understanding what is happening in the data and establishing hypotheses to be tested. For example, the data visualization in Figure 1 quickly highlighted the importance of offensive rebounds and three-point shooting percentage in the Warriors’ overtime losses.

Figure 1: Use Quick Data Visualizations to Establish Hypotheses to Test

Lesson #3: Different teams came up with different sets of predictive variables. Team #1 came up with Total Rebounds, Three-Point Shooting %, Fast Break Points and Technical Fouls as the best predictors of performance. They tested a hypothesis that the more “aggressive” the Warriors played (as indicated by rebounding, fast break points and technical fouls), the more likely they were to win (see Figure 2).

Figure 2: Testing Potential Predictive Variables

Team #2 came up with the variables of Steals, Field Goal Percentage and Assists as the best predictors of performance (see Figure 3).

Figure 3: ANOVA Table for Team #2

Team #2 then tested their analytic models against two upcoming games: New Orleans and Houston. Their model accurately predicted not only the wins, but the margin of victory fell within their predicted ranges. For example in the game against New Orleans, their model predicted a win by 21 to 30 points, in which the Warriors actually won by 22 (see Figure 4).

Figure 4: Predicting Warriors versus New Orleans Winner

And then in the Houston game, their model predicted a win by 0 to 10 points (where 0 indicated an overtime game), and the Warriors actually won that game by 9 points (see Figure 5).

Figure 5: Predicting Warriors versus Houston Winner

I think I’m taking Team #2 with me next time I go to Vegas!

By the way, in case you want to run the exercise yourself, Appendix A lists the data sources that the teams used for the exercise. But be sure to operate under the same 5-hour constraint!

Summary
A few other learnings came out of the exercise, which I think are incredibly valuable for both new as well as experienced data scientists:

  • Don’t spend too much time trying to set up the perfect analytic environment. Sometimes a simple analytic environment (spreadsheet) can yield consider insights with little effort.
  • Start with small data sets (10 to 20GB). That way you’ll spend more time visualizing and analyzing the data and less time trying to gather and prepare the data. You’ll be able to develop and test hypotheses much more quickly with the smaller data sets running on your laptop, which one can stress test later using the full data set.
  • Make sure that your data science team collaborates closely with business subject matter experts. The teams that struggled in the exercise were the teams that didn’t have anyone who understood the game of basketball (not sure how that’s even possible, but oh well).

One of the many reasons why I love teaching is the ability to work with students who don’t yet know what they can’t accomplish. In their eyes, everything is possible. Their fresh perspectives can yield all sorts of learnings, and not just for them. And yes, you can teach an old dog like me new tricks!

Appendix A:  Exercise Data Sources
Extract “Team Stats” from the Warriors Game Results website: http://www.espn.com/nba/team/schedule/_/name/gs.  Listed below is a cross-section of games from which you may want to use to start your analysis.

Wins

Rockets 1/20/17: http://www.espn.com/nba/matchup?gameId=400900067

Thunder 1/18/17: http://www.espn.com/nba/matchup?gameId=400900055

Cavaliers 1/16/17: http://www.espn.com/nba/matchup?gameId=400900040

Raptors 11/16/16: http://www.espn.com/nba/matchup?gameId=400899615

Trailblazers 1/2/17:  http://www.espn.com/nba/matchup?gameId=400900139

Overtime (Losses)

Houston 12/1/16: http://www.espn.com/nba/matchup?gameId=400899436

Grizzles 1/6/17: http://www.espn.com/nba/matchup?gameId=400899971

Sacramento 2/4/17: http://www.espn.com/nba/matchup?gameId=400900169

Losses

Spurs 10/25/16: http://www.espn.com/nba/boxscore?gameId=400899377

Lakers 11/4/16: http://www.espn.com/nba/matchup?gameId=400899528

Cavaliers 12/25/16: http://www.espn.com/nba/matchup?gameId=400899899

Note: You are welcome to gather team and/or individual stats from any other games or websites that you wish.

The post Golden State Warriors Analytics Exercise appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@ThingsExpo Stories
In his session at @ThingsExpo, Arvind Radhakrishnen discussed how IoT offers new business models in banking and financial services organizations with the capability to revolutionize products, payments, channels, business processes and asset management built on strong architectural foundation. The following topics were covered: How IoT stands to impact various business parameters including customer experience, cost and risk management within BFS organizations.
Here are the Top 20 Twitter Influencers of the month as determined by the Kcore algorithm, in a range of current topics of interest from #IoT to #DeepLearning. To run a real-time search of a given term in our website and see the current top influencers, click on the topic name. Among the top 20 IoT influencers, ThingsEXPO ranked #14 and CloudEXPO ranked #17.
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, discussed some of the security challenges of the IoT infrastructure and related how these aspects impact Smart Living. The material was delivered interac...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
The Founder of NostaLab and a member of the Google Health Advisory Board, John is a unique combination of strategic thinker, marketer and entrepreneur. His career was built on the "science of advertising" combining strategy, creativity and marketing for industry-leading results. Combined with his ability to communicate complicated scientific concepts in a way that consumers and scientists alike can appreciate, John is a sought-after speaker for conferences on the forefront of healthcare science,...
In his session at Cloud Expo, Alan Winters, U.S. Head of Business Development at MobiDev, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to maximize project result...
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abilit...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.