Welcome!

Government Cloud Authors: Elizabeth White, Pat Romanski, Dana Gardner, Liz McMillan, Gopala Krishna Behara

Related Topics: @CloudExpo, Containers Expo Blog, SDN Journal, @DevOpsSummit

@CloudExpo: Article

What ‘Software-Defined’ Really Means | @CloudExpo #AI #SDN #SDX #DevOps

It’s time to bring some clarity into the big picture of SD – what it is, and perhaps even more importantly, what it is not.

The visual model to declarative metadata representation to immutable deployment vision is in essence what SD is all about.

The secret to making this approach practical, and thus the key to understanding why SD approaches have become so prevalent, is the word immutable.

Once we get an SD approach right, we no longer have to touch the deployed technology whatsoever. Instead, to make a change, update the model and redeploy.

In a recent Cortex, I bemoaned the fact that as buzzwords go, Digital Transformation is excessively vague. There is yet another buzzword of our times that is suffering the same fate: Software-Defined.

Rare though buzz-adjectives may be among the pantheon of buzz-nouns and the occasional buzz-verb, Software-Defined (SD) has become remarkably pervasive. In fact, it ties together many different, quite disparate concepts into what has become a vague mishmash.

It's time to bring some clarity into the big picture of SD - what it is, and perhaps even more importantly, what it is not.

The Many Uses of Software-Defined
The most concrete use of the SD adjective is perhaps in the phrase Software-Defined Networking (SDN). SDN separates network equipment's control plane (where routing instructions and other metadata go) from the data plane (where the data being routed go), and then shifts the entire control plane to centralized software.

The network, however, is only the beginning. We have SD infrastructure (SDI), SD data centers (SDDCs), SD wide-area networking (SD-WAN), and more. Each of these approaches follows the lead of SDN, shifting control of various pieces of hardware (or virtualized hardware) to centralized, software-based management and configuration applications.

SDI (which includes SDN), in fact, is at the core of cloud computing. Clearly, there's no way to scale a cloud data center if people had to run from server to server making changes.

Furthermore, Network Functions Virtualization (NFV) from the telco world also falls under the SD banner. With NFV, telco service providers shift all control to software, so that the underlying hardware is entirely generic. No more dedicated switches, routers, and specialized telco gear - all the hardware consist of generic, white-label boxes.

Software-Defined: Beyond the Network
While the network-centric context of SD in corporate networks, cloud data centers, and telco infrastructure forms the home base of the SD movement, SDI is also an essential enabler of continuous integration and continuous delivery (CI/CD), core elements of DevOps.

In order to achieve the velocity that CI/CD promise, the ops part of the story must be SD. Instead of ops people managing servers individually, the DevOps team must be able to deploy and manage software automatically via centralized software control. In other words, the immutable infrastructure principle behind DevOps is nothing more than SDI.

In fact, now that virtualization has matured, all the infrastructure from hypervisors down to bare metal is SD.

At the application level, however, the SD story gets more complicated.

Using software to automate the tasks involved in deploying software is nothing new. Developers have been using runbooks for years - scripts that tell various parts of the environment to execute a series of tasks in a particular sequence.

As DevOps has matured, the notion of the mundane runbook has taken on new life, as DevOps vendors automate increasingly broad swaths of the software development lifecycle (SDLC) with ‘recipes' or other scripting approaches.

As applications and the environments they run in get more complicated, however, the world of DevOps automation finds itself in a Catch-22: the automation scripts or recipes themselves become increasingly complex software applications in their own right, and thus must go through an SDLC of their own, with all the testing and governance that go along with it.

As a result, we're back to square one, manually creating, managing, deploying, and versioning software.

Does Software-Defined Mean Declarative?
To address this Catch-22, some DevOps tools take a declarative approach. Instead of scripting the environment step by step, the declarative approach enables the user to describe the desired behavior, and then the tool interprets such a description and takes the necessary actions to implement such behavior out of sight of the user.

In fact, in many contexts, when most vendors say SD, they really mean that they take a declarative approach, separating configuration from the underlying implementation. There's more to SD behavior than simply following a declarative approach, however.

For example, HTML (and markup languages in general) are declarative. And while we could certainly hand-code a web page by pecking out HTML, we're far more likely to use a visual tool for that purpose.

When we build a web site using such a tool, we're essentially working with models. The model is a visual, configurable representation of the page that the tool can convert into HTML for browsers to render into the page itself for users to view.

In this example, therefore, we have three different ways of thinking about the page: as a visual model, independent of any particular technology implementation of the page; as the HTML markup for that page; and as the action of the browser itself, an application purpose-built to render HTML into visual pages.

Architects and other shrewd readers will recognize the pattern above as being an instance of Model-Driven Architecture (MDA), or its common implementation, Model-Driven Development (MDD).

Does Software-Defined Mean Model-Driven?
MDA is an Object Management Group (OMG) standard
for creating metamodels that represent platform-independent models (our visual model, above) and platform-specific models (the HTML markup in the example), as well as an abstracted approach for turning the former into the latter.

Models, especially visual ones, are in broad use today, but MDA and MDD's best days are behind them. The reason: they didn't deal as well with change as MDA's creators had hoped.

In the MDD world, a developer might build a (platform-independent) model of an application in a model-driven tool and then push a button and out would pop the (platform-specific) source code that represented the working application.

However, if developers wanted to subsequently make a change, they would either need to change the model and regenerate and redeploy all the code (an onerous and time-consuming task), or tweak the auto-generated code itself, thus making it inconsistent with the model.

Round-trip tooling that would take tweaked code and automatically update the model - the holy grail of MDD - has proven impractical.

If we combine some of the principles from MDD with the declarative approach, however, we finally see some light at the end of the tunnel. Instead of the code-generating context of MDA reminiscent of CASE tools of yore, the platform-specific representation for a declarative model consists of a metadata representation of a configuration.

In practice, tools that take this approach create such metadata representations in JSON, XML, or a domain-specific language appropriate to the task at hand. Developers occasionally have reason to view such metadata, but rarely if ever have call to monkey with it directly.

Instead, users - who need not be developers - simply make changes in the model, typically via direct interaction with icons or other visual elements, or by selecting appropriate configurations. The underlying platform takes care of the rest.

The Intellyx Take
The round-trip code-generation vision of MDD proved unworkable, but the visual model to declarative metadata representation to immutable deployment vision is in essence what SD is all about.

The secret to making this approach practical, and thus the key to understanding why SD approaches have become so prevalent, is the word immutable.

Once we get an SD approach right, we no longer have to touch the deployed technology whatsoever. Instead, to make a change, update the model and redeploy.

The most important takeaway from this Cortex: this core SD pattern is fully generalizable. It works with networks, data centers, DevOps-based deployments, and as I'll cover in part two, it's also at the core of the Low-Code/No-Code movement.

It's no wonder, therefore, that Software-Defined Everything (SDX) is rising to the top of the buzzword heap - but SDX is no mere buzzword. It describes the central technological principles behind Agile Digital Transformation.

Copyright © Intellyx LLC. Intellyx publishes the Agile Digital Transformation Roadmap poster, advises companies on their digital transformation initiatives, and helps vendors communicate their agility stories. As of the time of writing, none of the organizations mentioned in this article are Intellyx customers. Image credit: Tim Adams.

More Stories By Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, Forbes contributor, keynote speaker, and globally recognized expert on multiple disruptive trends in enterprise technology and digital transformation. He is ranked #5 on Onalytica’s list of top Digital Transformation influencers for 2018 and #15 on Jax’s list of top DevOps influencers for 2017, the only person to appear on both lists.

As founder and president of Agile Digital Transformation analyst firm Intellyx, he advises, writes, and speaks on a diverse set of topics, including digital transformation, artificial intelligence, cloud computing, devops, big data/analytics, cybersecurity, blockchain/bitcoin/cryptocurrency, no-code/low-code platforms and tools, organizational transformation, internet of things, enterprise architecture, SD-WAN/SDX, mainframes, hybrid IT, and legacy transformation, among other topics.

Mr. Bloomberg’s articles in Forbes are often viewed by more than 100,000 readers. During his career, he has published over 1,200 articles (over 200 for Forbes alone), spoken at over 400 conferences and webinars, and he has been quoted in the press and blogosphere over 2,000 times.

Mr. Bloomberg is the author or coauthor of four books: The Agile Architecture Revolution (Wiley, 2013), Service Orient or Be Doomed! How Service Orientation Will Change Your Business (Wiley, 2006), XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996). His next book, Agile Digital Transformation, is due within the next year.

At SOA-focused industry analyst firm ZapThink from 2001 to 2013, Mr. Bloomberg created and delivered the Licensed ZapThink Architect (LZA) Service-Oriented Architecture (SOA) course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, which was acquired by Dovel Technologies in 2011.

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting), and several software and web development positions.

IoT & Smart Cities Stories
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
DXWorldEXPO LLC announced today that Big Data Federation to Exhibit at the 22nd International CloudEXPO, colocated with DevOpsSUMMIT and DXWorldEXPO, November 12-13, 2018 in New York City. Big Data Federation, Inc. develops and applies artificial intelligence to predict financial and economic events that matter. The company uncovers patterns and precise drivers of performance and outcomes with the aid of machine-learning algorithms, big data, and fundamental analysis. Their products are deployed...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
All in Mobile is a place where we continually maximize their impact by fostering understanding, empathy, insights, creativity and joy. They believe that a truly useful and desirable mobile app doesn't need the brightest idea or the most advanced technology. A great product begins with understanding people. It's easy to think that customers will love your app, but can you justify it? They make sure your final app is something that users truly want and need. The only way to do this is by ...
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...