Welcome!

Government Cloud Authors: Elizabeth White, Liz McMillan, Gopala Krishna Behara, Raju Myadam, Kevin Jackson

Related Topics: Government Cloud, Industrial IoT, Microservices Expo, Cognitive Computing , Agile Computing, Cloud Security

Government Cloud: Blog Post

Estimating the Hidden Costs of Cost Estimation

Federal agencies are not properly equipped to estimate their future IT infrastructure costs

A recent Government Accountability Office (GAO) report found that most federal agencies, with the exception of the Department of Defense, are not properly equipped to give accurate cost estimations of their IT infrastructure. There are many reasons for this, but the problem starts with the data that is being fed into most cost estimation practices and models.

For any organization, federal or commercial, the ability to credibly estimate the time and budget required for a project to reach a successful conclusion is crucial. The many benefits of good estimating have been explained over and over.

According to the GAO, federal agencies are not setting a good precedent in estimating their IT projects.  Most federal agencies have weak processes that rely on expert opinion, while some employ tools such as parametric models. At the root of any process, whether parametric or expert opinion, agencies need access to information about the systems they are supporting or seeking to develop - and this is precisely when the process begins to break down.

Incomplete, Bad and Unattainable Data
Collecting data is not cheap, and it takes time and effort to do it properly. When the budget is tight, data often gets cut from programs. As a result, agencies have an incomplete view of their systems. If they do have data, it is often ‘dirty,' meaning that poor time keeping or project tracking practices generated data that is effectively meaningless. In many cases, system integrators that are performing the work have the data, but agencies don't have access to it.

So, in lieu of data, agencies rely on expert opinion to provide basic inputs into their estimating process. But depending on the day your expert is having, they'll give you some stats about the applications (or not) and send you on your way. But how can you be sure that data is reliable?

The end result is you can't. By front-loading your estimation process or model with uncertain data, any result that comes out will be unreliable ... garbage in, garbage out.

Shrinking the Cone of Uncertainty
Federal organizations would benefit greatly from automated software analysis and measurement systems that generate unbiased metrics of their applications. The value of injecting fact-based measures into the front end of an estimating process greatly reduces the Cone of Uncertainty.

The Cone of Uncertainty describes the evolution of uncertainty in a project. In the beginning, when little is known, estimates are subject to large uncertainty. As more information is learned, the uncertainty decreases.

By injecting an accurate calculation of a system's size, we greatly reduce the amount of uncertainty. And supporting size data with measures of that system's technical and functional complexity, and an objective assessment of its underlying structural quality, reduces uncertainty even more. An estimate that has little uncertainty or a high degree of confidence is the foundation of accurately predicting development teams' productivity. This is important because planning and budgeting are merely exercises to determine how to allocate resources and plan when new capabilities will be available to your clients. How many developers will I need? How long will I need them? When will they be finished?

There are several sources (Standish's Chaos Reports) that document the IT industry's legacy of poor delivery. And there are many reasons why IT projects continue to fail.

We know that most IT budgets, both federal and commercial, are spent maintaining and supporting existing systems. It is clear that agencies that own these existing systems suffer from a lack of visibility into their complexity. Without this information, any planning and budgeting is handicapped. IT intensive programs that require the most planning to deliver systems on-time and on-budget would improve if we can shed some light into these systems and arm agencies with objective, fact-based insight.

Making the Invisible Visible
Through static code analysis, you can measure your application in real time, and gather unbiased metrics to share both internally and externally.

By getting these metrics right from the product that's being managed and worked on in real time, the data is consistent across all the programs. This independent, unbiased data can then be used to support program decisions around the ongoing management of the application.

When a racing team is tuning a car's engine, the team isn't going to ask the engineer what he thinks and run a race based solely off of that data. It'll fill the engine with sensors and monitor every metric it can grab. If your organization approaches software estimation the same way, you'll create a repository of useful data to show how your IT infrastructure has evolved, and what it will take to bring it to the next level.

Be sure to flip over to Dan Galorath's article on data driven estimation for more information on this topic.

More Stories By Lev Lesokhin

Lev Lesokhin is responsible for CAST's market development, strategy, thought leadership and product marketing worldwide. He has a passion for making customers successful, building the ecosystem, and advancing the state of the art in business technology. Lev comes to CAST from SAP, where he was Director, Global SME Marketing. Prior to SAP, Lev was at the Corporate Executive Board as one of the leaders of the Applications Executive Council, where he worked with the heads of applications organizations at Fortune 1000 companies to identify best management practices.

IoT & Smart Cities Stories
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...