Welcome!

Government Cloud Authors: Pat Romanski, Elizabeth White, Liz McMillan, Dana Gardner, Gopala Krishna Behara

Related Topics: Open Source Cloud, @CloudExpo

Open Source Cloud: Article

NoHadoop: Big Data Requires Not Only Hadoop

The one area where MapReduce/Hadoop wins today is that it's freely available to anyone

Over the past few years, Hadoop has become something of a poster child for the NoSQL movement. Whether it's interpreted as "No SQL" or "Not Only SQL", the message has been clear, if you have big data challenges, then your programming tool of choice should be Hadoop. Sure, continue to use SQL for your ancient legacy stuff, but when you need cutting edge performance and scalability, it's time to go Hadoop.

The only problem with this story is that the people who really do have cutting edge performance and scalability requirements today have already moved on from the Hadoop model. A few have moved back to SQL, but the much more significant trend is that, having come to realize the capabilities and limitations of MapReduce and Hadoop, a whole raft of new post-Hadoop architectures are now being developed that are, in most cases, orders of magnitude faster at scale than Hadoop.



The problem with simple batch processing tools like MapReduce and Hadoop is that they are just not powerful enough in any one of the dimensions of the big data space that really matters. If you need complex joins or ACID requirements, SQL beats Hadoop easily. If you have realtime requirements, Cloudscale beats Hadoop by three or four orders of magnitude. If you have supercomputing requirements, MPI or BSP

beat Hadoop easily. If you have graph computing requirements, Google's Pregel beats Hadoop by orders of magnitude. If you need interactive analysis of web-scale data sets, then Google's Dremel architecture beats Hadoop by orders of magnitude. If you need to incrementally update the analytics on a massive data set continuously, as Google now have to do on their index of the web, then an architecture like Percolator beats Hadoop easily.

The one area where MapReduce/Hadoop wins today is that it's freely available to anyone, but for those that have reasonably challenging big data requirements, that simple type of architecture is nowhere near enough.

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...
Rafay enables developers to automate the distribution, operations, cross-region scaling and lifecycle management of containerized microservices across public and private clouds, and service provider networks. Rafay's platform is built around foundational elements that together deliver an optimal abstraction layer across disparate infrastructure, making it easy for developers to scale and operate applications across any number of locations or regions. Consumed as a service, Rafay's platform elimi...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
In today's enterprise, digital transformation represents organizational change even more so than technology change, as customer preferences and behavior drive end-to-end transformation across lines of business as well as IT. To capitalize on the ubiquitous disruption driving this transformation, companies must be able to innovate at an increasingly rapid pace.